学校推薦型選抜 A

総合試験 (英語)

問題冊子

◎開始の合図があるまで、この問題冊子を開いてはいけません。

注 意 事 項

解答時間は1時間です。

- ●開始の合図のあと、問題用紙が合計4枚(この表紙を含めず)あることを確認してください。
- ●解答は、解答用紙の指定された欄に記入してください。
- ●問題の内容については、質問しないこと。
- ●試験中に、印刷の不鮮明な箇所やページの脱落などに気づいた場合は、手を挙げて監督者に知らせてください。
- ●途中で退出できません。
- ●途中で気分が悪くなったりした場合、監督者に申し出てください。
- ●この問題冊子の余白は、下書きなどに利用してかまいませんが、どのページも切り離してはい けません。
- ●試験終了後,この問題冊子は持ち帰ってください。

●解答時間:9時30分から10時30分

注) 1 は、人類の進化に関する研究について、カロリンスカ研究所が発行した文書を改編して出題しま
した。試験問題として利用した他者の著作権物を HP 上に掲載することは「著作憲法 36 条」に抵触するお
それがありますので、ここに原文を掲載することができません。

<u>1</u> 次の文章を読み、各	問いに答えなさい。	
The question of our or	igin and what makes us unique	
	^① what do we know about	
2	The mitochondrial genome is small and contains	
³ By the technical deve	elopments,	
	[Revised: The Nobel Prize20)22

- 問1. 太文字の各語の説明として、問題文での使われ方において、最も適切なものを下から選んで、その番号を書きなさい。
- a. evolution b. derive c. extinct d. archaic e. degrade f. contemporary g. interbreed h. intense i. implication j. ultimate
- 1. being or happening at the end of a process
- 2. something that is very great or extreme in strength or degree
- 3. to make something become worse, especially in quality
- 4. no longer has any living members
- 5. to produce young animals from parents of different groups
- 6. modern and relate to the present time
- 7. of or belonging to the past
- 8. develop or come from something else
- 9. a possible effect or result of an action or a decision
- 10. a gradual development of something

- 問2. 下線部①の質問に対して、研究者らが明らかにしたことを英語で説明しなさい。
- 問3. 下線部②を和訳しなさい。
- 問 4. 下線部③について、研究の実施にあたって問題となったことを<u>英語で</u>説明しなさい。
- 問5 この文章の内容に適する選択肢を下から選び、その番号を答えなさい。
- 1. The analysis of the whole genome sequence revealed the cultural aspects of extinct people.
- 2. Researchers obtained the whole genome information of Neanderthals through the analysis of mitochondrial DNA.
- 3. We can evaluate the genetic relations of extinct relative of present-day humans.
- 4. Researchers failed to investigate the DNA of Neanderthals.
- 5. None of the above.

注) ② は、Nature Medicine に掲載された、食生活と健康に関する研究について、文章を改変して出題
しました。試験問題として利用した他者の著作権物を HP 上に記載することは「著作権法 $\mathrm{36}$ 条」に抵触
する恐れがありますので、ここに原文を掲載することができません。

2 次の英文を日本語に訳しなさい。

The concept that healthy diets su	pport good health
	personalized nutrition
注: *1metabolic traits: 代謝特性, *2obesity:	肥満
	[Revised from: Nature Medicine, 2023]

3 次の和文を英語に記	訳しなさい。		
	と候の一つに、		
発症を	こういった治療法の		
	antibody, *³自己免疫疾患 auto		
	ſRevi	sed from: <i>Nature</i>	. 20231

注) $\fbox{3}$ は、 $\it Nature$ に掲載された、糖尿病の治療薬に関する研究について文章を改変し、出題しました。 試験問題として利用した他者の著作権物を $\it HP$ 上に記載することは「著作権法 $\it 36$ 条」に抵触する恐

れがありますので、ここに原文を掲載することができません。

会和6年度	学校推薦型選抜 A	١
-------	-----------	---

受験番号	

解答用紙(英語) (表紙)

◎指示があるまで開いてはいけません。

注意事項

- ●開始の合図のあと、解答用紙が合計3枚(この表紙を含めず)あることを確認してください。
- ●開始の合図のあと、この表紙および解答用紙(合計4枚)の各ページ右上の枠すべてに受験番号を記入してください。
- ●解答は、解答用紙の所定の欄に記入してください。
- ●解答用紙は、綴じた部分を離してはいけません。

										受験番号	
1 問 1											※印の枠は 空欄にして おくこと。
a	b	С	d	е	f	g	h	i	j		*
問2	•										
											*
問3											
											*
問 4											
											*
問 5											
											*

芷語	解答用紙	(3枚のうち2枚目)
7		

受験番号	
文 版 田 万	

	2																	
(全文	和訳	Š	_の	枠内	ルこり	又め	るこ	と)									

※印の枠は
空欄にして
おくこと。

*

L	

英語	解答用紙	(3枚の	j.	t 3	妆目)	١
		(•) / X V /				

	※印の 空欄に
全文英訳 この枠内に収めること)	おくこ
	*

英語解答用紙はこのページで終わりである。

※印の枠は

学校推薦型選抜A

総合試験 (理科)

問題冊子

◎開始の合図があるまで、この問題冊子を開いてはいけません。

注 意 事 項

解答時間は1時間です。

- ●開始の合図のあと、問題用紙が合計5枚(この表紙を含めず)あることを確認してください。
- ●解答は、解答用紙の指定された欄に記入してください。
- ●問題の内容については、質問しないこと。
- ●試験中に、印刷の不鮮明な箇所やページの脱落などに気づいた場合は、手を挙げて監督者に知らせてください。
- ●途中で退出できません。
- ●途中で気分が悪くなったりした場合、監督者に申し出てください。
- ●この問題冊子の余白は、下書きなどに利用してかまいませんが、どのページも切り離してはい けません。
- ●試験終了後,この問題冊子は持ち帰ってください。

●解答時間:10時50分から11時50分

理科

<u>解答をするにあたっての注意</u>:答えはすべて解答欄に記入し、計算結果は有効数字 3 桁で答えよ。必要があれば、次の値を用いよ。

原子量: H = 1.00, C = 12.0, N = 14.0, O = 16.0, S = 32.0, Pb = 207

ファラデー定数: F=9.65 x 10⁴ C/mol 常用対数: log₁₀2=0.30, log₁₀3=0.48

1 次の文章を読み、以下の問いに答えよ。

下線部①に関して、9種の単体金属 ▲~Ⅰについて以下の実験 1~5を行った。

- 実験 1 A, B, D, F, H は希硫酸に溶け水素を発生する。E, G は希硫酸には溶解しないが、希硝酸には溶解する。
- 実験 2 常温の水と反応するのは \mathbf{F} のみで、 \mathbf{B} は熱水と反応し、 \mathbf{D} 、 \mathbf{H} は高温の水蒸気と反応し、 \mathbf{N} がずれも水素を発生した。残る金属は、高温の水蒸気とも反応しなかった。
- 実験 3 A, C, D は濃硝酸には溶解しないが、このうち A, D は希硝酸に溶解する。
- 実験4 Eの陽イオンを含む水溶液に G の単体を浸すと, G の表面に E が析出した。
- 実験 5 Gと I を電極として電池を作ると、Gが正極、I が負極となる。

理 科

- 問1 あ ~ か に適当な語句を記せ。
- 問2 実験 1~5 に関して,**A~I** に該当する 9 種の金属を下記の中から選び,それぞれ<u>元素記</u> **号**で記せ。

ナトリウム, アルミニウム, 銅, 鉛, マグネシウム, 白金, ニッケル, 亜鉛, 銀

- 問3 下線部②に関して、正極および負極における放電時の反応を電子 e⁻を含むイオン反応式で それぞれ記せ。
- 問4 下線部③に関して、希硫酸の濃度を知るために中和滴定を行うことがある。その時使用すると考えられる図1に示したガラス器具 **a~d** のそれぞれの名称および用途について簡潔に記せ。
- 問5 下線部④に関して、電流 5.00 A で 2 時間 40 分 50 秒の放電を行ったとき、正極および負極の質量はどれだけ増減するか求めよ。計算過程も記せ。
- 問6 下線部④に関して、放電前の希硫酸が 1.00 kg であった場合、問 5 の放電後の希硫酸の質量パーセント濃度を求めよ。計算過程も記せ。
- 問7 鉛蓄電池は長期間使用を繰り返すと電解液が徐々に減少する。その原因として、水分の蒸 発以外にどのようなことが考えられるか理由を述べよ。

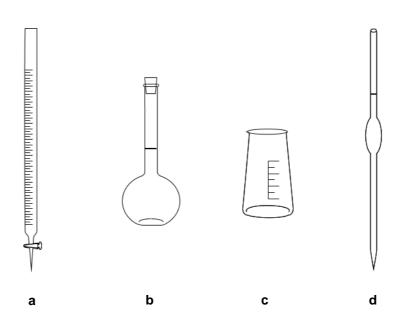


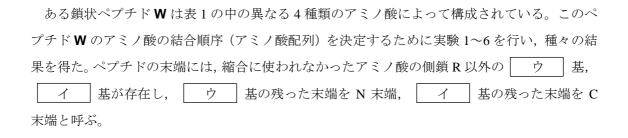
図 1

2 次の文章を読み、以下の問いに答えよ。
タンパク質は多数の α-アミノ酸 (以下, アミノ酸という) が ア 結合によって連なった
高分子化合物である。アミノ酸は R - $CH(NH_2)$ - $COOH$ で表され, R の部分をアミノ酸の側鎖とい
う。アミノ酸は分子内に酸性の イ 基と塩基性の ウ 基の両方を持ち、酸・塩基の
いずれとも反応する エ 電解質である。アミノ酸は水溶液中では 3 種のイオンが平衡状
態を作って存在する。例えば、水溶液中のグリシン(側鎖 R が H のアミノ酸)の平衡状態は次
の (1) 式, (2) 式で表される。
$H-CH-COOH \rightleftharpoons H-CH-COO^- + H^+ \cdots (1)$ $NH_3^+ NH_3^+$
$H-CH-COO^- \iff H-CH-COO^- + H^+ \cdots (2)$ $NH_3^+ \qquad NH_2$
(1) 式, (2) 式の電離定数をそれぞれ K_1 , K_2 とすると次のように表される。
$K_1 = egin{bmatrix} oldsymbol{ ilde{I}} & oldsymbol{ ilde{I}} &$
その数値を $K_1 = 4.0 \times 10^{-3}$ (mol/L), $K_2 = 2.5 \times 10^{-10}$ (mol/L) とするとき, pK_i を $-\log_{10} K_i$ と定義す
れば、 $pK_1 = $ a , $pK_2 = $ b である。
pH=2の水溶液中でのグリシンの各イオンの存在比は、
$H-CH-COOH : H-CH-COO^- : H-CH-COO^- = 1 : $
pH = 11 の水溶液中でのグリシンの各イオンの存在比は,
H-CH-COOH : H-CH-COO : H-CH-COO = 1 : e : f NH ₃ ⁺ NH ₃ ⁺ NH ₂
である。 下線の2箇所の「性」は、削除することが適切
このようにアミノ酸は,酸性溶液中では オ 性イオン,等電点では カ 性イオン,
塩基性溶液中では キ 性イオンの割合が最も多くなる。このアミノ酸の性質を利用して
陽イオン交換樹脂により、アミノ酸を分離することができる。すなわち、陽イオン交換樹脂にア
ミノ酸水溶液を通すと、樹脂内の H ⁺ と水溶液中の陽イオンの交換が起こり吸着される。緩衝液
を順次 nH を上げかがら流していくと 、笶雪占に達したものから樹脂への吸差力を失って溶出さ

また、アミノ酸にはいろいろな種類がある。 イ 基と ウ 基を1つずつ持つアミ

コロアミノ酸という。

ノ酸は ク 性アミノ酸, 側鎖 R の部分に イ 基を持つアミノ酸を ケ 性ア


ウ 基をもつアミノ酸を

れる。

ミノ酸といい,

3

理科

- 実験 1 ペプチド**W** の元素分析値(質量%)は、炭素 54.2 %、水素 7.1 %、酸素 20.2 %、窒素 12.7 %、硫黄 5.8 %であった。
- 実験 2 酵素①は \Box 性アミノ酸の \Box 基側の \Box 結合を加水分解により 切断する。ペプチド f W をこの酵素①で処理するとペプチド f X とアミノ酸 f A が得られた。
- 実験 4 ペプチド $W \sim Z$ それぞれに濃硝酸を加えて加熱すると黄色になり、さらにアンモニア 水を加えると橙黄色に呈色する反応が陽性となったのは、ペプチド W, X, Z であった。
- 実験 5 ペプチド \mathbf{W} に水酸化ナトリウム水溶液を加えて加熱した後, 酢酸鉛 (II) 水溶液を加えると, 黒色沈殿が生じた。
- 実験 6 ペプチド X を完全に加水分解すると 3 種のアミノ酸 B, C, D が得られた。 $B \sim D$ を含む pH = 2 の酸性水溶液を作り,陽イオン交換樹脂に通してアミノ酸をすべて吸着させた。次に,吸着したアミノ酸を陽イオン交換樹脂から溶出させるために緩衝液を加えた。このとき,加える緩衝液の pH を少しずつ大きくしていったところ,pH = 3.2 付近でアミノ酸 B, pH = 5.5 付近でアミノ酸 C, pH = 9.7 付近でアミノ酸 D がそれぞれ溶出した。

表 1

アミノ酸の名称	略号	側鎖
グリシン	Gly	-н
グルタミン酸	Glu	-(CH ₂) ₂ -COOH
フェニルアラニン	Phe	-CH ₂ -
メチオニン	Met	-(CH ₂) ₂ -S-CH ₃
リシン	Lys	-(CH ₂) ₄ -NH ₂

理 科

- 問1 アー~ コーに適切な語句を記せ。
- 問 2 **I** , **I** に適切な式を記せ。
- 問 3 **a** ~ **f** に適切な数値を記せ。
- 問4 ペプチドWの分子式を記せ。また、その計算過程も記せ。
- 問5 実験5で生じる黒色沈殿は何か。
- 問6 ヒトの体内で十分に合成されず、食品から摂取する必要のあるアミノ酸を何というか。 また、これに該当するアミノ酸を表1の中からすべて選び、略号で記せ。
- 問7 **A~D**に該当するアミノ酸を略号で記せ。
- 問 8 ペプチド \mathbf{W} のアミノ酸配列を (例) に従って \mathbf{N} 末端から \mathbf{C} 末端に向かって順に略号で記せ。
 - (例) Lys Gly Met

会和6	年度学校推薦型選抜 A	
-----	-------------	--

受験番号	

解答用紙(理科) (表紙)

◎指示があるまで開いてはいけません。

注意事項

- ●開始の合図のあと、解答用紙が合計5枚(この表紙を含めず)あることを確認してください。
- ●開始の合図のあと、この表紙および解答用紙(合計6枚)の各ページ右上の枠すべてに受験番号を記入してください。
- ●解答は、解答用紙の所定の欄に記入してください。
- ●解答用紙は、綴じた部分を離してはいけません。

理科 解答用紙 (5枚のうち1枚目)

				受験番号		
1 問 1						※印の枠は 空欄にして おくこと。
あ:			V):			*
ð:			え:			
お:			カ:			
問 2						
A :	B :	C :		D :	E :	*
F:	G :	H :		1:		
問 3						
(正極)						*
(負極)						

理科 解答用紙 (5枚のうち2枚目)

					受験番号			
1の	続き							
問 4								※印の枠は 空欄にして おくこと。
	(名称)							*
а	(用途)							
	(名称)							
b	(用途)							
	(名称)							
С	(用途)							
	(名称)			 				
d	(用途)							
問 5								
(計算	過程)							**
		_ 答	(正極)		(負極)			

理科 解答用紙 (5枚のうち3枚目)

	受験番号	
1 の続き		
		※印の枠は 空欄にして
問 6		おくこと。
(計算過程)		*
	答 ————————————————————————————————————	
問 7		
[F] /		*

理科 解答用紙 (5枚のうち4枚目)

	受験番号	
图 1		※印の枠は 空欄にして おくこと。
ア:	イ:	*
р :	エ:	
オ:	カ:	
+:	<i>7</i> :	
ケ:	コ:	
問 2		
I :		*
П:		
HD a		
問 3 a :	b:	*
c :	d :	

理科 解答用紙 (5枚のうち5枚目)

		•		
(名称)		(該当するアミノ酸)		*
問 6				
				*
[F] 3				*
問 5				
		台()/114/		
		答(分子式)		
計算過程				*
問 4				おくこと。
				※印の枠は 空欄にして
2の続き				
		受験番号		

理科解答用紙はこのページで終わりである。